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The onset of the aggregative mode of liquid–solid fluidization was explored. The experimental find-
ings were interpreted by means of the dynamic (elastic) wave velocity and the voidage propagation
(continuity) wave velocity. For widely different systems, the mapping of regimes has been presented
in terms of the Archimedes number, the Froude number and the fluid–solid density ratio. The pro-
posed diagram also depicts the typical Geldart’s Group A particles fluidized with air.
Key words: Particulate and aggregative fluidization; Transition; Mapping of regimes.

A liquid can be employed to fluidize a mass of solid particles1. Similarly as in gas
fluidization, the system is characterized by a minimum fluidization velocity, Umf, at
which the drag force exerted on the particles by the upward flowing fluid just balances
the effective particle weight (weight minus buoyancy force)2,3. For velocities smaller
than Umf, the bed is in the fixed (static) state condition, for velocities greater than Umf,
the bed is fluidized. It expands either homogeneously (a particulate, smooth, non-bub-
bling manner of fluidization) as the fluid velocity is increased or the amount of fluid in
excess of Umf bypasses the bed as bubbles (a heterogeneous, aggregative, bubbling
mode of fluidization). By the bubbles we mean different-shaped pockets (inhomogene-
ities) of fluidizing fluid almost free of particles. Unlike the gas–solid systems, the ma-
jority of liquid fluidized beds tend to fluidize without forming bubbles.

Current industrial applications of gas fluidized beds are much more numerous than
those of liquid fluidized beds. Quite recently, however, new processes are being ex-
plored involving the use of liquid–solids beds in the areas of water treatment, hydrome-
tallurgy, food production and biochemical processing4.

The purpose of this article is to explore the transition between particulate and aggre-
gative fluidization, i.e., the minimum bubbling conditions for liquid fluidized beds.
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THEORETICAL

Homogeneous (Particulate) Expansion

It is commonly accepted that liquid fluidized beds expand in a homogeneous mode and
a flat, sharp interface between the top of bed and freeboard is generally preserved. One
should realize that the effects of factors on the bed expansion such as particle irregu-
larities, particle size distributions should always be taken into account. Moreover, the
influence of the distributor design and the ratio of particle size to column diameter can
also be significant. This work is confined to spherical, nearly monosized particles
fluidized in vessels at which the effects of the physical boundaries are negligible.

The increase of bed voidage with the increasing superficial velocity of fluid, U, is
described by a purely empirical relationship (1) which is generally known as the Ri-
chardson–Zaki equation1

U/Ut = Re/Ret = εn  , (1)

where the exponent, n, is a function of the Reynolds number under terminal free-fall
conditions, Ret. For different ways of predicting Ret, a reader is referred to a recent
article of ours5. The values of Ret were also rigorously computed for Ar ∈  〈1, 4 . 107〉
and tabulated in this work5. Garside and Al-Dibouni6 proposed that n should be evalu-
ated from

n = 
5.09 + 0.284 Re t

0.877

1.0 + 0.104 Re t
0.877 (2)

for Ret ∈ 〈10–3, 3 . 104〉.
In order to avoid the prior prediction of Ret in the estimation of n, Khan and Richardson7

expressed the exponent n with the aid of the Archimedes number as

n = 
4.8 + 0.103 Ar 0.57

1.0 + 0.043 Ar 0.57 (3)

for Ar ∈ 〈0.1, 108〉.
Comparison of the empirical correlations (2) and (3) for the Richardson–Zaki expo-

nent is presented in Fig. 1. The differences between the values of n predicted by the
newer correlations (2) and (3) are about 10%. The relation between Ar and Ret is given
below by Eqs (12) and (13). A sharp drop in the exponent, n, when moving from the
viscous flow regime (Ret < 1) to the Newtonian flow regime (Ret > 1 000) is visualized
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in Fig. 1. Similar correlations of other authors for the exponent n are reviewed and
compared elsewhere4,8.

Other relationships have been developed which also describe, more or less, satisfac-
torily, the log-linear expansion characteristics expressed by Eq. (1). Utilizing the data
of Garside and Al-Dibouni6, we obtained a common voidage function for the entire
flow regime9

1.440Re1.804 + 20.36Re - ε4.730Ar = 0 (4)

for Re ∈ 〈Remf, Ret〉 and ε ∈ 〈εmf, 1〉.
It is apparent that, in addition to accuracy and convenience, a desired correlation

should also describe the boundary situations, i.e., the point of minimum fluidization
(Remf, εmf) and the free-fall conditions (Ret, ε = 1). With respect to a very wide range
of pertinent flow conditions (Ret ∈ 〈10–3, 104〉), these requirements are very severe.

Onset of Aggregative (Bubbling) Behaviour

The occurrence of bubbling phenomena in liquid fluidized beds was first reported al-
most fifty years ago by Wilhelm and Kwauk10 in work with lead shots and water. The
behaviour of bubbling liquid and gas fluidized beds is similar in many aspects. For
example, voids in liquid fluidized beds correspond to the passage of gas bubbles in
beds fluidized with gas. The start of aggregative behaviour can be easily detected in
both the systems for example by measuring the pressure fluctuations within the bed.

Wallis11 considered the occurrence of particle-phase pressure which leads to the ex-
istence of dynamic waves in solid–fluid systems. Such waves may either grow into
shocks (voids, bubbles) or decay depending on the magnitude of their velocity relative

1                    1.102           1.103                 1.106

4.8

4.0

3.2

2.4

n

Ar

1

2

0.054           3.90                114                 1 817Ret

FIG. 1
Comparison of the correlations for the Richard-
son–Zaki exponent n: 1 according to Garside and
Al-Dibouni6, Eq. (2); 2 Khan and Richardson7,
Eq. (3)
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to that of the continuity waves. This point, i.e., the development of bubbles (voids)
from the growth of small perturbations, is still a matter of interest and some con-
troversy. According to the studies of Wallis11,12, and Wallis et al.13 the system is stable
(particulate behaviour) if the dynamic (elastic) wave velocity, Ue, is greater than the
continuity wave velocity, Uε. The system is unstable (aggregative, bubbling behaviour)
if the continuity wave velocity exceeds the dynamic wave velocity.

Foscolo and Gibilaro14–16 developed a dynamic, fluid-particle interaction model of a
particulate fluidized bed. Their model made it possible to formulate the general sta-
bility criterion of Wallis11 for the onset of aggregative behaviour quite specifically.
Based on this model, the elastic wave velocity (that is analogous to the velocity of
sound in a compressible fluid) is given as

Ue = [3.2gdp (1 – ε) (ρs – ρf)/ρs]
1/2  . (5)

The quantity Ue expresses the maximum velocity at which the small voidage disturb-
ances can propagate throughout a bed without developing shock fronts (inhomogene-
ities, voids, bubbles).

The voidage propagation velocity, Uε, is expressed by

Uε = nUt (1 – ε)εn–1  . (6)

The Wallis’s stability criterion is stated as follows:

Ue 
>
=
<
 Uε  , (7)

where the sign > holds for stable (particulate, homogeneous) behaviour, the sign <
holds for unstable (aggregative, heterogeneous) behaviour and the sign = holds for the
stability limit (the boundary line between homogeneous and heterogeneous behaviour).
It can be simply expressed with the use of Eqs (5) and (6).

When Ue > Uε, the voidage disturbances decay rapidly to the equilibrium condition
and the system is stable (homogeneously expanded bed). On the other hand, when Ue < Uε
the disturbances tend to grow rapidly, inhomogeneities develop, and the systems is
unstable (heterogeneously expanded bed). In the operation regime for which Ue = Uε, a
stability limit is just attained. In other words, the equality of Ue and Uε defines the
boundary between homogeneous (particulate) and heterogeneous (aggregative) behaviour of
a fluidized bed. The equality Ue = Uε determines the voidage at which a possible
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transition between particulate and aggregative fluidization occurs. On this basis, the
point of minimum bubbling, explored for example by Broadhurst and Becker17, can be
defined as the condition where the dynamic and continuity wave velocities become
equal.

Although the above relationships may seem formally simple, the general hydrody-
namic behaviour of the fluid–solid systems is an intricate one. This is demonstrated, for
example, by the dependence of the exponent, n, on Ret or Ar shown in Fig. 1. Moreover,
the velocity of the continuity wave, Uε, given by Eq. (6), is a non-linear function of the
voidage, ε, and exhibits an extremal behaviour.

The critical condition at which the bubbling just starts, i.e., the minimum bubbling
criterion, can also be expressed in terms of the common dimensionless groups (Ar, Ret

and De). On introducing these non-dimensional groups into Eqs (5)–(7), we can get
after some manipulations for the onset of bubbling (boundary between homogeneous
and heterogeneous behaviour, stability limit)

(Ar De)1/2 − 



1 − ε
3.2





1/2

nεn−1Ret = 0     [Ue = Uε] (8)

or

Fr/(1 − De) − 3.2/[(1 − ε)n2ε2n−2] = 0     [Ue = Uε] (9)

where De is the density ratio, De = ρf/ρs, and the Froude number, Fr, is defined as

Fr = U t
2/(gdp) = (Re t

2/Ar) (1 − De)/De (10)

or

Fr = Re t
2/Ga  . (11a)

In other words, the original Wallis’s criterion, given by Eq. (7), for stable, particulate
behaviour (homogeneous expansion) can be expressed with respect to the above lines
as

Fr/(1 − De) < 3.2/[(1 − ε)n2ε2n−2]     [Ue > Uε]  . (11b)
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EXPERIMENTAL

All experiments were performed at 25 °C in a glass fluidization column of internal diameter D = 51
mm. The column was provided with a perforated plate distributor with 0.5 mm circular orifices. The
relative area of the perforations was as large as 0.63%. With the use of a thermostat, the temperature
in the bed section was maintained within 0.2 K along its length. A pump was employed to circulate
the fluidizing liquid (water), and the flow rate was measured by a calibrated rotameter manifold.

The distilled water was employed as the fluidizing fluid. Its literature values of density and dy-
namic viscosity amount to ρf = 996.9 kg m–3 and µf = 0.8937 mPa s, respectively.

Three fractions (sieve cuts) of steel spheres (dp = 0.2, 0.5 and 1.0 mm) and two fractions of glass
spheres (dp = 1.5 and 2.5 mm) were investigated in this study. The solid densities were found to be
as large as ρs = 7 700 kg m–3 (steel) and ρs = 2 700 kg m–3 (glass). The basic physical parameters of
the above systems are given in Table I.

The voidage of bed was determined from the measured height of expanded bed, H, according to
relationship

ε = 1 – W/(FH ρs)  . (11c)

RESULTS AND DISCUSSION

The experiments were performed to observe the bed homogeneity (fluidization quality)
for the range of voidage ε ∈ 〈0.4, 0.9〉. The flow rate of water was increased gradually
from the onset of fluidization (U = Umf, ε = εmf = 0.4) until the observations of bed
surface became difficult due to the turbulent vortexing at high fluid velocities.

It is apparent that the beds of steel particles are apt to expand aggregatively more
than glass particles because of their markedly higher density (ρ = 7 700 vs 2 700 kg m–3).
Three fractions of steel spheres were used to examine expansion of such fluidized sus-
pensions. Smooth fluidization of the smallest particles (dp = 0.2 mm) was observed. The

TABLE I
Physical properties of the spherical solids and terminal velocity conditions in water at 25 °C

Material Size range 
mm

d
_

p
mm

ρs
kg m–3

Ar Ret Ut
m s–1

n
Eq. (3)

Fr

 Steel 0.15–0.25 0.2 7 700     656.5  17.2 0.0771 3.77 3.03

0.55–0.45 0.5  10 260 115.2 0.206 2.66 8.70

0.9–1.1  1.0  82 060 429.5 0.385 2.49 15.1  

 Glass 1.4–1.6  1.5 2 700  70 370 391.0 0.234 2.49 3.71

2.3–2.7  2.5 325 680 972.0 0.348 2.44 4.95

Properties of water at 25 °C: ρf = 996.9 kg m–3, µf = 0.8937 mPa s.
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bed expanded in a uniform manner with increasing fluid velocity and the transition to
aggregative behaviour did not occur. However, this was not the case of the larger par-
ticles (dp = 0.5 mm) in which voidage pockets become visible at a voidage of about 0.5.
At this moment, the bed surface, originally flat and well-defined, showed fluctuations
that considerably increased with further increasing fluid velocity. Such an appearance
is characteristic of beds fluidized with gas. The behaviour of the largest steel particles
(dp = 1.0 mm) was not quite easy to classify in the vicinity of the point of minimum
fluidization. Smaller voidage discontinuities were likely to occur at the column walls.
As the liquid velocity was somewhat increased, pockets of liquid were clearly visible
and considerable fluctuations of the bed surface occurred.

In the experiments with the glass spheres (dp = 1.5 and 2.5 mm), fully particulate
expansion was not detected. Within the bed of the 1.5 mm particles, quite narrow liquid
pockets appeared at a bed voidage of around 0.6. The voidage discontinuities spanned
the entire column cross section and tended to break as the liquid superficial velocity
was increased. Flat voids appeared in the bed of the larger particles (dp = 2.5 mm)
at ε ÷ 0.4–0.5. The visual observations of both systems indicate that the transition from
particulate to aggregative behaviour is more distinct for smaller particles than for larger
ones. More or less diffusive transition appears to be characteristic of large suspended
particles.

Comparison with Theory

As follows from Eqs (1)–(4), the voidage of liquid–solid fluidized beds is an intricate
function of the flow conditions, Re, and the Archimedes number, Ar. As we discussed
recently in ref.8 and as illustrated in Fig. 1, there are appreciable differences in predict-
ing the velocity–voidage relationships. On the other hand, the free fall conditions of
isolated spheres at steady-state given by

CDRe t
2 = 

4
3
Ar (12)

can be estimated quite accurately with the aid of the Turton–Levenspiel correlation for
the drag coefficient18

CD = 
24
Ret

 (1 + 0.173 Re t
0.657) + 

0.413
1 + 16 300 Re t

−1.09  . (13)

Predictions for nonspherical particles can be, however, substantially less accurate19.
The Wallis’s stability criterion may simply be expressed in dimensionless form

through the function FU introduced as
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FU = (Ue – Uε)/Ue  . (14)

The quantity FU can readily be evaluated as a function of bed voidage, ε. Positive and
negative values of FU reflect homogeneous and heterogeneous behaviour, respectively.
Zero value of FU pinpoints a voidage at which the transition from homogeneous to
heterogeneous fluidization is predicted to occur. Using Eqs (5), (6) and (14), we have
made systematic predictions of the function FU for different ε. Dimensionless criteria of
stability alternative to Eq. (14) may be expressed on the basis of Eq. (8) or (9).

As can be seen above, the purely empirical Richardson–Zaki exponent1, n, is an
important quantity. This exponent was predicted with the aid of Eq. (3).

Values of the criterion (14) were systematically computed for the systems explored
by experiment and plotted in Figs 2 and 3 (as a function of bed voidage). As demon-
strated by curves 1 and 2 in Fig. 2, the smallest steel particles (dp = 0.2 mm) expand
fully in the particulate manner (FU > 0). Equation (6) suggests and curves 1 and 2 in
Fig. 2 visualize that greater values of the Richardson–Zaki exponent n (as predicted by
Eq. (2)) signal the lower stability of moderately expanded beds with the same particles.

Particles with dp = 0.5 mm pass through

0.4                                 0.7                                1.0

 1

 0

–1

FU

ε

1

2

3

4

FIG. 2
Mode of fluidization of steel spheres by am-
bient water indicated by the stability criterion
(14) as a function of bed voidage and particle
diameter. 1 dp = 0.2 mm, n = 3.28 (predicted
by Eq. (3)); 2 dp = 0.2 mm, n = 3.77 (predicted
by Eq. (2)); 3 dp = 0.5 mm, n = 2.7 (predicted
by Eq. (3)), * experimental point of transition;
4 dp = 1.0 mm, n = 2.5 (predicted by Eq. (3)),
● experimental point of transition

0.4                                 0.7                                1.0

 0.3

 0

–0.3

FU

ε

1

2

FIG. 3
Mode of fluidization of glass spheres by am-
bient water indicated by the stability criterion
(14) as a function of bed voidage and particle
diameter. 1 dp = 1.5 mm, n = 2.5 (predicted by
Eq. (3)), × experimental point of transition; 2
dp = 2.5 mm, n = 2.4 (predicted by Eq. (3)), ❍
experimental point of transition

Transition from Homogeneous to Bubbling Fluidization 1705

Collect. Czech. Chem. Commun. (Vol. 62) (1997)



both the fluidization regimes and particles with dp = 1.0 mm expand always aggrega-
tively from the onset of fluidization. These model estimates are in reasonable agreement
with the experimental findings presented in Figs 2 and 3.

The second intersection of FU with the abscissa in Fig. 3 marks a return from aggre-
gative to particulate behaviour at a higher bed voidage. Unfortunately, this interesting
point was difficult to examine because of fluctuations of the bed surface and a given
capacity of the circulation pump.

Similarly, values of the Wallis’s criterion were also evaluated for the glass particles
(dp = 1.5 and 2.5 mm). The computed results are plotted as a function of the bed void-
age in Fig. 3. As can be seen, the mode of fluidization passes through both regimes of
expansion. This is also in qualitative agreement with the experimental observations.

Several decades ago, Wilhelm and Kwauk10 proposed the Froude number defined by
Eq. (10) as a practical criterion for discriminating between the particulate and aggrega-
tive behaviour of fluidized beds. These authors employed this parameter purely on an
empirical basis without physical reasoning. They reported that the fluidized bed be-
haved aggregatively for Fr > 1.

With respect to Eqs (8) and (9), it is apparent that rather than the Froude number
alone either of the equivalent groups

Fr/(1 − De) = Ret
2/(Ar De) (15)

should rather be employed for predicting the point of transition from the homogeneous
to the bubbling fluidization.

The above criterion is employed below in efforts to draw a global map of particulate
and aggregative behaviour of beds fluidized with different fluids.

The point at which the curve FU = FU(Ar, ε) just touches the horizontal axis corre-
sponds to the critical (maximum) value of Fr/(1 – De) for which the system still be-
haves particulately throughout the whole range of expansion. Such critical values of
Fr/(1 – De) were systematically estimated from Eq. (9) for Ar ∈ 〈1, 107〉 and ε = 0.8
with the aid of the empirical correlation (3) for the Richardson–Zaki exponent n. The
computed results are shown in Figs 4 (line 1) and 5.

The other critical value of the criterion Fr/(1 – De) corresponds to a situation where
the curve FU intersects the abscissa already at the voidage equal to the bed voidage at
the point of minimum fluidization, i.e., at ε = εmf = 0.4. Such states are delineated by
curve 2 in Fig. 4. This curve marks the boundary of the systems which expand aggre-
gatively from the onset of fluidization.

The area between lines 1 and 2 in Fig. 4 represents the systems that expand particu-
lately or aggregatively in dependence on the corresponding voidage of bed and thus on
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the actual fluid velocity. As demonstrated in this figure, the experimental data points –
though not numerous – support the model predictions.

The region 3 in Fig. 4 represents typical Group A particles in the Geldart’s diagram20,21

for classifying materials that are very easy to fluidize with gas. Such powders are char-
acterized by a relatively small particle size (typically materials with dp = 50–100 µm)
and a low particle density (typically ρs = 600–1 100 kg m–3). Fluid cracking catalysts
are typical examples of these fine and light powders. Their gas fluidized beds undergo
considerable expansion at gas velocities between the minimum fluidization velocity,
Umf, and the velocity at which bubbling commences (the minimum bubbling point,
Umb). The minimum bubbling velocity, Umb, is always greater than the minimum fluidi-
zation velocity, Umf. In other words, the beds of Group A solids exhibit both aggrega-
tive and particulate behaviour, which is in agreement with the theoretical predictions
shown in Fig. 4.

1                              1.103                       1.106

150

 75

  0

F
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1 

– 
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e)

Ar

3

1

2

FIG. 4
Mapping of the mode of fluidization: 1 pre-
dicted boundary below which fully particulate
expansion occurs, ε = 0.8; 2 predicted bound-
ary above which fully aggregative expansion
occurs, ε = 0.4; 3 empirical region representing
typical, very-easy-to–fluidize, Group A solids
of the Geldart classification20 which exhibit
particulate-aggregative behaviour when
fluidized by ambient air (Ar ≈ 10, Fr  ≈ 15); ex-
perimental data (fluidization with ambient
water): + ρs = 7 700 kg m–3, dp = 0.2 mm; * ρs =
7 700 kg m–3, dp = 0.5 mm, ● ρs = 7 700 kg m–3,
dp = 1.0 mm; ×  ρs = 2 700 kg m–3, dp = 1.5 mm;
❍ ρs = 2 700 kg m–3, dp = 2.5 mm
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FIG. 5
Mapping of the mode of fluidization. The solid
line shows the predicted bounds of fully par-
ticulate expansion (enlarged section of Fig. 4,
with line 1); 1 fully particulate fluidization; 2
particulate and aggregative fluidization
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Figure 5 indicates that the bounds of particulate fluidization intuitively assumed by
Wilhelm and Kwauk10 (Fr ≈ 1 for Ar ≈ 5 and De << 1) seem to be somewhat conserva-
tive. Nevertheless, such values are not far from the predictions shown in Fig. 5.

CONCLUSIONS

The transition from particulate to aggregative mode of fluidization can be conveniently
predicted with the aid of the general stability criterion of Wallis11 and the particle bed
model of Foscolo and Gibilaro14. The flow conditions at which the onset of heteroge-
neities (bubbles) occurs (point of minimum bubbling) are an intricate function of the
Archimedes criterion, the fluid–solid density ratio and the bed voidage. The com-
mencement of a bubbling regime is more easily observed for smaller particles. The
present experience suggests that the proposed mapping of behaviour of liquid fluidized
beds is at least in qualitative agreement also with the entirely empirical Geldart classi-
fication diagram of solids for their fluidizing with air.

SYMBOLS

Ar Archimedes number, Ar = dp
3gρf(ρs – ρf)/µf

2

CD drag coefficient of particle, CD = 4gdp(ρs – ρf)/(3Ut
2ρf)

dp diameter of particles, m
dp mean diameter of particles, m
De fluid–solid density ratio, De = ρf/ρs

F cross-sectional area of column, m2

FU stability function defined by Eq. (14)
Fr Froude number, Fr = Ut

2/(gdp) = Re t2/Ga = (Re t2/Ar)(1 – De)/De = (Re t2/Ar)(ρs – ρf)/ρf

g acceleration due to gravity, g = 9.807 m s–2

Ga Galileo number, Ga =  gd p3 ρf
2/ µf

2 = Ar De/(1 – De) = Ar ρf/(ρs – ρf)
H bed height, m
n Richardson–Zaki exponent defined by Eq. (1)
Re Reynolds number, Re = Udpρf/µf

Remb Reynolds number at minimum bubbling condition, Remb = Umbdpρf/µf

Remf Reynolds number at minimum fluidization condition, Remf = Umfdpρf/µf

Ret Reynolds number at terminal velocity of falling particle, Ret = Utdpρf/µf

U superficial velocity of fluid, m s–1

Ue dynamic (elastic) wave velocity defined by Eq. (5), m s–1

Umb velocity of fluid at minimum bubbling condition, m s–1

Umf velocity of fluid at minimum fluidization condition, m s–1

Ut terminal, free fall velocity of particle, m s–1

Ue continuity (voidage propagation) wave velocity defined by Eq. (6), m s–1

W mass of particles, kg
ε voidage, void fraction (porosity)
εmb voidage at minimum bubbling condition
εmf voidage at minimum fluidization condition
µf fluid viscosity, kg m–1 s–1

ρf fluid density, kg m–3

ρs solid density, kg m–3
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